

3rd Virtual ADAPTtoCLIMATE Conference

The Emilia-Romagna policies for the climate change and the ecological transition

20th April 2021

Patrizia Bianconi Patrizia.bianconi@regione.emilia-romagna.it

Emilia-Romagna Region

Satellite Image of Northern Italy in the winter season (source: MODIS radiometer, NASA)

Total area: 22.453 km2 Plain: 47.8 % Hill: 27.1 % Mountain: 25.1 % Inhabitants: 4.457.115 GDP (2018): 149.500 million €

The region's actions to fight climate change

Long-term objectives (2050)

Short/Medium -term ambitions (2025 - 2030)

Under 2 Memorandum of Understanding Under 2 Coalition

- The Under2 Coalition is driven by a group of ambitious state and regional governments committed to keeping global temperature rises to well below 2°C. sub national States and regional governments are playing a key role in accelerating climate change actions, compared to the policies implemented by national states
 The Region signed the MoU in 2015 and committed itself to reducing its emissions
 - by 80 percent compared to 1990 levels by 2050 Carbon Neutrality

oambiailclima

Assembly Resolution n. 187/2018 *Mitigation and Adaptation strategy for Emilia-Romagna region*

http://ambiente.regione.emiliaromagna.it/it/cambiamenti-climatici

Climate Change effects in Emilia-Romagna: from little water to too much water

Summer 2017: record drought

More serious deficits between Piacenza and Parma with a reduction in rainfall from 200 to 600 millimeters compared to the average

December 2017: Record rainfall

In 36 hours (11-13/12/2017) from 300 to 500 mm of rain. The ridge from Piacenza to Modena was very badly hit. Historical peaks for Parma, Enza and Secchia

2018: Precipitation

Map of precipitation anomalies with deficit - 120mm and surplus at + 150mm, compared to 1961-1990 Source: ARPAE

2018: Hydroclimatic balance sheet

It's the difference between precipitation and evapotranspiration. Deficiencies in the foothills and plains of up to -550 mm and a water surplus of up to 900 mm in the entire Apennines. Source: ARPAE

Significant increases of minimum and maximum temperatures in annual and seasonal. More intense increase sign in highs and, especially during the summer Average cumulative annual and seasonal rainfall is slightly decreasing, except in autumn where a positive trend is maintained.

Future climate variability in Emilia-Romagna

- For the period 2021-2050, the minimum and maximum temperature can be increased by about 1.5° C in winter, spring and autumn approx.
 2.5°C in summer
- Possible increases in temperature extremes, in particular heat waves and tropical nights
- Possible increase in total precipitation and extreme events in autumn (about 20%) and increase in the number of days without precipitation in summer (about 20%)

Regions are called upon to 'play their part' in **mitigating** emissions, taking on board European and international objectives, which remains a global and international objective;

but even more can and must act in terms of **adaptation at the local level**, increasingly including climate change scenarios in the definition of plans, programmes and choices for the size of infrastructure works, learning to target 2030 and 2050.

Objectives of the Regional Strategy for Mitigation and Adaptation

The Regional Adaptation and Mitigation Strategy aims, first of all, to provide an overall framework for the regional sectors, administrations and organizations involved, also in order to assess the implications of climate change in the different sectors concerned.

The mainstreaming process, with which this document was built, was itself one of the objectives of the Strategy, to encourage the involvement of all regional stakeholders in the process of defining shared and informed policies.

Identify new adaptation and mitigation measures that will complement the plans and programmes being reviewed and updated.

Identify and activate a process of involvement of local stakeholders in order to integrate the issue of adaptation and mitigation in all regional sectoral policies.

The sectors included

- **1. Inland water and water resources**
- 2. Air quality
- **3. Settlement systems and urban areas**
- 4. Territory (landslides, floods and soil degradation)
- 5. Coastal areas
 - **Transport and Infrastructures**
 - . Forests

6

- 8. Biodiversity and Ecosystems
- 9. Agricultures
- **10.** Production system
- **11.** Energy system
- 12. Tourism
- 13. Health
- **14.** Cultural Heritage
- **15.** Fisheries and aquaculture

Main climate change risks analyzed in the Strategy

- increase in forest fires
- hydrogeological instability (landslides, floods) and subsidence
- soil degradation and the initiation of desertification processes
- loss of agricultural production
- Iower water availability and quality
- retreat of the coastline
- saline intrusion
- adverse health effects
- increase in energy consumption
- loss of biodiversity and modification of ecosystems
- negative effects on economic activities (industry, trade, tourism)

The main vulnerabilities in Emilia-Romagna

- the greatest impact of the climate change is related to the water cycle, i.e. the greater frequency and intensity of extreme weather and climate events and the change in the average annual water availability;
- a progressive erosion of the coast, which is also subject to an increase in the number and intensity of storms, due to the combined action of sea rise and subsidence.

Short/Medium-term ambitions for the Climate Change (2030)

Implementation of the Regional Strategy for Mitigation and Adaptation through:

- Updating of sector planning/programming by introducing and/or reinforcing mitigation and/or adaptation actions
- Greater integration between planning and multilevel governance also through support to the development of local adaptation plans
- Activation of the monitoring of the effectiveness of actions at global and transversal level and continuous mapping of territorial vulnerabilities

Development of a culture of 'climate risk' in the design of public works (dimensioning and innovation) and in stakeholders

Proposals for actions/addresses for future planning and programming

- The actions/addresses are divided into proposals for adaptation and mitigation
- The actions/addresses are both sectorial and cross-cutting
- They must be integrated into existing and future policies, plans and programs
- New actions/addresses for mitigation, only for those sectors considered a priority for mitigation (agriculture, energy system, production system, settlement system and urban areas, forests, transport)

Some of the sectorial Adaptation Actions included in the document

- Preparation of a Plan for the defense and adaptation of the coastal zone to climate change
- Refinement of treatment systems on urban wastewater treatment plants for the reuse of wastewater
- Prescription / encouragement of water efficiency/saving standards in civil construction and Regulation of agricultural practices: introduction of techniques that reduce the emission of GHG precursors
- Define and systematize maintenance plans, safety plans and plans to reduce the vulnerability of structures, infrastructures, and structures (e.g. roads, distribution networks) of strategic importance also for the security of the territory and of people.
- Allocate resources for structural interventions to counter heat waves
- Promote Adaptation Plans for companies

Some concrete actions to implement the sustainable mobility strategy - Zero Emission Vehicles (ZEV)

- incentives for the purchase of electric vehicles and EV charging stations
- Exclusive purchase of zero-emission buses from (2025-2030) and exclusive purchase of zero-emission vehicles for public fleets by 2030
- Install EV chargers in all public buildings by 2020
- Support the installation of EV chargers in the workplace
- Installation of EV fast chargers on major motorways by 2025

The Governance for the mitigation and adaptation Strategy implementation and maintenance

Permanent Regional Forum for Climate Change (local authorities, businesses, universities, city research centres)

Institutional capacity, the socioeconomic context, as well as individual perception, knowledge and availability play a key role in the "adaptive capacity" of a social system.

- Awareness raising and information on the meaning of "adaptation and mitigation to climate change"
- Dissemination of knowledge and training on solutions and practices
- place of permanent dialogue with local administrations and productive sectors for the comparison and coordination on mitigation and adaptation policies at local level

inform citizens about adaptation and mitigation issues, so that they can contribute to the development of increasingly resilient territories

- With forms of participation in presence, meetings and workshops open to different stakeholders will be organized, with the use of methods of involvement, listening, communication and facilitation.
- Through a web platform that will ensure communication and transparency of the process by offering everyone the opportunity to participate online in the discussion
 - Through education and communication actions for students carried out with the contribution of the Regional Centres of Education for Sustainability

Example of Forum activities to support local authorities for Sustainable Energy and Climate Action Plan

climate service: climate projection 2021 – 2050 for Sustainable Energy and Climate Action Plan

objective: to support municipalities and unions of municipalities to compose SECAP having a base of climate scenarios at the regional level defined with a single methodology

> Step 1: definition homogeneous areas and indicators

Step 2: built data sheet for each homogeneous area Step 3: presented and available on Emilia-Romagna web site

areas

for each area in which the Emilia-Romagna Region has been divided, only schematically report the main and major effects that the risks identified above have on the physical-biological and socio-economic sectors.

For a more in-depth, detailed analysis of the individual sectors, please refer to the annexes of the complete document – Climate change mitigation and adaptation strategy for the Emilia-Romagna Region – which is available on www.regione.emilia-romagna/ambiente/cambiamentoclimatico

homogeneous areas and SECAP municipalities

climate vulnerability seven indicators of the European SECAP guidelines

	Indicator		Description		
/	Average annual temperature		Annual average daily average temperatures		
	Maximum summer temperature		Average of the maximum daily temperatures recorded during the summer season		
/	Minimum winter temperature		Average of the daily minimum temperatures recorded during the winter season		
	Tropical summer nights		Number of nights with the minimum temperature higher than 20° C, recorded in the summer season		
	Summer heat wave duration		Maximum number of consecutive days recorded during the summer, with the maximum daily temperature greater than the 90th percentile local daily (calculated over the 1961-1990 reference period)		
	Annual precipitation		Total annual precipitation quantity		
	Dry summer days		Maximum number of consecutive days without precipitation during the summer		

statistical regionalization applied to Global Climate Models (Coupled Model Intercomparison Project 5 –CMIP5)

Il data set climatico Eraclito v. 4.2

Modelli Climatici Globali

Spatial resolution 5x5 km;

Antolini et al, 2015, Int. J. of Climatology, DOI:10.1002/joc.4473

CMCC-CM	Centro Euro-Mediterraneo per i Cambiamenti Climatici	0.75°x0.75°
MPI-ESM-MR	Max Planck Institute for Meteorology	1.87°x1.87°
CNRM-CM5	Centre National de Recherches Meteorologiques	1.40°x1.40°
CanESM2	Canadian Center for Climate Modelling and Analysis	2.79°x2.81°
NorESM1	Norwegian Climate Center	1.9°x2.5°
INM-CM4	Russian Institute for Numerical Climate Modelling	2°x1.5°

Future Projection: Models Average (ensemble mean)

datasheet for each homogeneous area (i.e. eastern hill)

Minimum winter temperature

PAESC		
Area di pertinenza	COLLINA EST	
Periodo di riferimento	1961-1990	
Periodo futuro	2021-2050	
Scenario emissivo	Rcp 4.5	
Fonte Dati	data set Eraclito (vers. 4.2)	
Metodo di elaborazione	regionalizzazione statistica applicata a modelli climatici globali.	
Indicatore	temperatura minima invernale	
Descrizione	media delle temperature minime giornaliere	
Unità di misura	[°C]	
Valore climatico di riferimento	0.0	
Valore climatico futuro	1.4	
H	climatic reference value	

future climatic value

Average annual temperature

PAESC	
Area di pertinenza	COLLINA EST
Periodo di riferimento	1961-1990
Periodo futuro	2021-2050
Scenario emissivo	Rcp 4.5
Fonte Dati	data set Eraclito (vers. 4.2)
Metodo di elaborazione	regionalizzazione statistica applicata a modelli climatici globali.
Indicatore	temperatura media annua
Descrizione	media delle temperature medie giornaliere
Unità di misura	[°C]
Valore climatico di riferimento	11.7
Valore climatico futuro	13.4

datasheet for each homogeneous area (i.e. eastern hill)

Maximum summer temperature

PAESC		
Area di pertinenza	COLLINA EST	
Periodo di riferimento	1961-1990	
Periodo futuro	2021-2050	
Scenario emissivo	Rcp 4.5	
Fonte Dati	data set Eraclito (vers. 4.2)	
Metodo di elaborazione	regionalizzazione statistica applicata a modelli climatici globali.	
Indicatore	temperatura massima estiva	
Descrizione	media delle temperature massime giornaliere	
Unità di misura	[°C]	
Valore climatico di riferimento	25.5	
Valore climatico futuro	28.8	

Tropical summer nights PAESC **COLLINA EST** Area di pertinenza Periodo di riferimento 1961-1990 Periodo futuro 2021-2050 Rcp 4.5 Scenario emissivo Fonte Dati data set Eraclito (vers. 4.2) Metodo di regionalizzazione statistica applicata a modelli climatici elaborazione globali. Indicatore notti tropicali estive notti con la temperatura minima superiore a 20°C Descrizione Unità di misura Valore climatico di 3 riferimento Valore climatico 8 futuro

datasheet for each homogeneous area (i.e. eastern hill)

Summer heat wave duration

PAESC	
Area di pertinenza	COLLINA EST
Periodo di riferimento	1961-1990
Periodo futuro	2021-2050
Scenario emissivo	Rcp 4.5
Fonte Dati	data set Eraclito (vers. 4.2)
Metodo di	regionalizzazione statistica applicata a modelli climatic
elaborazione	globali.
Indicatore	onde di calore estive
Descrizione	numero massimo di giorni consecutivi con temperatur massima superiore al 90mo percentile
Unità di misura	
Valore climatico di	1
riferimento	-
Valore climatico	8

Annual precipitation

PAESC	
Area di pertinenza	COLLINA EST
Periodo di riferimento	1961-1990
Periodo futuro	2021-2050
Scenario emissivo	Rcp 4.5
Fonte Dati	data set Eraclito (vers. 4.2)
Metodo di elaborazione	regionalizzazione statistica applicata a modelli climatici globali.
Indicatore	precipitazione annuale
Descrizione	quantità totale cumulata
Unità di misura	[mm]
Valore climatico di riferimento	1000
Valore climatico futuro	910

Dry summer days

PAESC		
Area di pertinenza	COLLINA EST	
Periodo di riferimento	1961-1990	
Periodo futuro	2021-2050	
cenario emissivo	Rcp 4.5	
onte Dati	data set Eraclito (vers. 4.2)	
Metodo di elaborazione	regionalizzazione statistica applicata a vari modelli climatici globali.	
ndicatore	giorni senza precipitazione in estate	
Descrizione	numero massimo di giorni consecutivi con precipitazione inferiore a 1 mm	
Jnità di misura		
/alore climatico di iferimento	20	
/alore climatico uturo	25	

correspondence of municipalities with homogeneous area

REGGIO EMILIA PROVINO	EGGIO EMILIA PROVINCE			
MUNICIPALITY	HOMOGENEOUS AREA CLIMATE DATA SHEET	HOMOGENEOUS AREA CLIMATE DATA SHEET	HOMOGENEOUS AREA CLIMATE DATA SHEET	
Albinea	LOWLAND WEST	HILL WEST		
Bagnolo in Piano	LOWLAND WEST			
Baiso	HILL WEST			
Bibbiano	LOWLAND WEST			
Boretto	LOWLAND WEST			
	LOWLAND WEST			

https://ambiente.regione.emilia-romagna.it/it/cambiamenti-climatici/gli-strumenti/forum-regionale-cambiamenti-climatici/scenari-climatici-regionali-per-aree-omogenee-1/localizzazioni

booklets datasheet for each homogeneous area

available in Emilia-Romagna website – climate change pages

https://ambiente.regione.emilia-romagna.it/it/cambiamenticlimatici/gli-strumenti/forum-regionale-cambiamenticlimatici/scenari-climatici-regionali-per-aree-omogenee-1/schede

We don't have more time! We have to act!

Thanks!

http://ambiente.regione.emilia-romagna.it/it/cambiamenti-climatici Patrizia Bianconi

patrizia.bianconi@regione.emilia-romagna.it